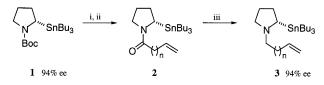


Tetrahedron Letters 41 (2000) 2235-2237

TETRAHEDRON LETTERS

A convenient route to *N*-alkyl-2-tributylstannyl-pyrrolidines involving reductive amination

Neil J. Ashweek, Iain Coldham * and Graham P. Vennall


School of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

Received 2 December 1999; accepted 14 January 2000

Abstract

A new and convenient method for the formation of *N*-alkyl-2-tributylstannyl-pyrrolidines from *N*-Boc-2-tributylstannyl-pyrrolidine has been developed. The procedure uses *N*-Boc deprotection, followed by rapid base wash and reductive amination with an aldehyde and NaBH₃CN in nitromethane. © 2000 Elsevier Science Ltd. All rights reserved.

 α -Amino-trialkylstannanes are important reagents in organic synthesis that allow the formation, by transmetallation, of the corresponding reactive α -amino-organolithium species, capable of effecting a wide variety of transformations.^{1–3} The *N*-Boc-2-tributylstannyl-pyrrolidine **1** is readily available in highly enantiomerically-enriched form,⁴ and therefore its direct conversion to the corresponding *N*-alkyl derivatives is highly desirable. Currently, this transformation is limited to the *N*-methyl (by reduction)^{1b} and *N*-allyl^{2b} derivatives, the latter by *N*-Boc deprotection of **1** with *B*-bromo-catecholborane,⁵ to give the secondary amine, which can be alkylated efficiently only with reactive electrophiles. We have prepared the *N*-but-3-enyl⁶ and *N*-pent-4-enyl compounds **3**, *n*=1,2 by a two-step route (Scheme 1) using *N*-Boc deprotection then addition of NaOH_(aq) and an acid chloride to give the amides **2**. Reduction of the amides **2** with LiAlH₄ gave the required α -amino-stannanes **3**.

Scheme 1. Reagents and conditions: (i) *B*-bromo-catecholborane, CH₂Cl₂, 10 min; (ii) 2 M NaOH_(aq), CH₂=CH(CH₂)_nCOCl, 18 h, n=1, 76%, n=2, 82%; (iii) LiAlH₄, Et₂O, 30 min, n=1, 89%, n=2, 92%

Although this route gave the desired *N*-alkyl compounds in good yield, the necessity to prepare the appropriate acid chlorides limited the synthetic utility of this procedure for more complex substrates.

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. *P1I:* S0040-4039(00)00137-4

We, therefore, sought an alternative route to *N*-alkyl-2-tributylstannyl-pyrrolidines using the more readily available aldehydes, with in situ reduction. After screening a variety of solvents and reducing agents, it was found that *N*-Boc deprotection of stannane **1** with *B*-bromo-catecholborane,⁵ followed by rapid washing with 2 M NaOH_(aq), concentration in vacuo, and subsequent treatment with 4 Å molecular sieves, NaBH₃CN and the aldehyde, in nitromethane,⁷ gave the required stannanes **4** (Table 1).

Table 1

 $Synthesis \ of \ N-alkyl-2-tributyl stannyl-pyrrolidines \ {\bf 4}$

N ^{'''} SnBu ₃ Boc	i, ii, iii	N'''SnBu ₃
1 94% ee		4

i, B-bromo-catecholborane, CH₂Cl₂, 10 min; ii, NaOH_(aq) wash; iii, MeNO₂, 4Å molecular sieves, NaBH₃CN, RCHO, 15 min.

Entry	R	Yield $4 (\%)^*$	Product	$[\alpha]_{\rm D}^{20}(c, {\rm CHCl}_3)$
1	-(CH ₂) ₃ CH ₃	64	4 a	+64.3 (2.8)
2	$-CH(CH_3)_2$	62	4 b	+72.3 (1.3)
3	-CH ₂ Ph	50	4 c	+67.3 (2.0)
4	-(CH ₂) ₂ CH=CH ₂	62	4d	+66.0 (1.3)
5	<i>E</i> -(CH ₂) ₂ CH=CHSPh	72	4 e	+55.3 (1.1)
6	Z-(CH ₂) ₂ CH=CHSPh	69	4f	+46.0 (1.0)
7	-(CH ₂) ₂ C≡CSPh	57	4g	+56.9 (1.1)
8	-(CH ₂) ₃ CO ₂ CH ₃	50	4h	+51.0 (2.5)

*Yield after chromatography on basic alumina.

Both linear and branched alkyl aldehydes (entries 1–3) reacted efficiently to give the corresponding stannanes **4** in good yield. The transformation was tolerant of various functional groups (entries 4–8). In all cases the *N*-alkyl derivatives **4**, derived from substrate **1** (94% ee),⁴ had large values for the optical rotation. The enantiomeric purity of a number of the products was checked using the two-step route (Scheme 1), which has been shown to be enantiospecific;⁶ in all cases the value for the optical rotation was in good agreement.⁸

In conclusion, we have shown that acid-sensitive, enantioenriched *N*-alkyl-2-tributylstannylpyrrolidines **4** may be prepared rapidly and efficiently by *N*-Boc deprotection, followed by in situ reductive amination in nitromethane. This procedure should be amenable to other unstable, acid-sensitive amines.

Acknowledgements

We wish to thank the EPSRC (N.J.A.) and the Leverhulme Trust (G.P.V.) for support of this work.

References

1. Quench with external electrophiles: (a) Burchat, A. F.; Chong, J. M.; Park, S. B. *Tetrahedron Lett.* **1993**, *34*, 51; (b) Gawley, R. E.; Zhang, Q. J. Org. Chem. **1995**, *60*, 5763.

- 2. 2,3-Sigmatropic rearrangement: (a) Coldham, I. J. Chem. Soc., Perkin Trans. 1 1993, 1275; (b) Gawley, R. E.; Zhang, Q.; Campagna, S. J. Am. Chem. Soc. 1995, 117, 11817.
- 3. Anionic cyclizations: (a) Coldham, I.; Fernàndez, J.-C.; Snowden, D. J. *Tetrahedron Lett.* **1999**, *40*, 1819; (b) Coldham, I.; Hufton, R. *Tetrahedron* **1996**, *52*, 12541.
- 4. Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994, 116, 3231.
- 5. Boeckman, R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411.
- 6. Coldham, I.; Hufton, R.; Snowden, D. J. J. Am. Chem. Soc. 1996, 118, 5322.
- 7. To a stirred solution of stannane 1 (250 mg, 0.54 mmol) in CH₂Cl₂ (5 mL) was added *B*-bromo-catecholborane (2.2 mL, 0.3 M in CH₂Cl₂). After 10 min at 22°C, the solution was washed rapidly with NaOH_(aq) (2 M, 3×5 mL), dried over MgSO₄ and concentrated in vacuo. Nitromethane (2.5 mL), 4 Å molecular sieves, NaBH₃CN (126 mg, 2.0 mmol) and 4-pentenal (92 mg, 1.1 mmol) were added and after 15 min the reaction was absorbed onto basic alumina. Chromatography (basic alumina, 10% EtOAc/pet.) gave the stannane 4d (143 mg, 0.33 mmol, 62%) as an oil.
- 8. For example, the two-step route (Scheme 1) gave the stannanes **4b** and **4d**, $[\alpha]_D^{20}$ +73.7 (*c* 1.2, CHCl₃) and $[\alpha]_D^{20}$ +67.5 (*c* 1.2, CHCl₃), respectively.